Smart Energy Storage Solutions

Energy Transition Solutions

Renewable Energy

100% Renewable by 2050
This week, the U.S. Department of Energy (DOE) and the Federal Emergency Management Agency (FEMA) released a one-year progress report on their on-going investigation into Puerto Rico’s electrical infrastructure. The report suggests that the island should begin heavily investing in renewable energy, specifically in small-scale, distributed solar power.

Battery Energy Storage

The largest battery storage project in Brazil, a 30MW/60MWh system, was inaugurated last year and presents a significant milestone in the country's energy infrastructure. Here are the key details about this groundbreaking project:
1. Project Overview:
• Capacity and Inauguration: The system has a capacity of 30MW/60MWh and was inaugurated on the networks of transmission system operator (TSO) ISO CTEEP.
• Investment: The project required a total investment of US$27 million, with ISO CTEEP permitted by regulations to earn up to US$5 million in revenue from the asset each year.

2. Impact and Purpose:

• Increasing Hosting Capacity: The BESS will help increase hosting capacity to cope with an expected increase in demand on a congested network. This enables the TSO to defer investing in a more expensive traditional transmission line.
• Non-Wires Alternative: The project serves as a 'non-wires alternative' or storage-as-a-transmission asset, demonstrating innovative approaches to enhancing grid capacity and reliability.
• Reducing Fossil Fuel Reliance: It aims to reduce reliance on fossil fuel peaker plants, which are often polluting and expensive, despite their infrequent use.
3. Location:
• The plant is located at an ISO CTEEP substation in São Paulo.

 

CHP and Microgrid

CHP can be a key resource to use in a microgrid because it provides a reliable, continuous, and controllable baseload source of electricity and localized thermal energy. Until energy storage allows renewable energy sources to be cost-effectively and reliably available on a continuous basis, CHP will continue to be a valuable resource, allowing renewables to serve peak daytime loads and support utility grid operations.

A profitable partnership.

These mutually compatible technologies come together to be more efficient, more cost-effective, more profitable, and more useful than they are on their own. 

• A CHP system linked with a microgrid allows the customer to utilize electrical energy and the thermal energy (hot water, steam, or chilled water) produced by the microgrid's power generation system.
• Increases overall efficiency, especially in the consumption of fuel feeding the microgrid's power generator.
• Reduces net operating costs. CHP often forms the most economical anchor for a microgrid system.
• Energy provided by the CHP can help with load balancing or add to energy storage. Battery Storage can keep CHP running at the most efficient conditions